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Efficient Voting with Penalties

Maksymilian Kwiek*
2014

Abstract

Simple majority does not reflect the intensity of voters’ preferences.
This paper presents an efficient collective choice mechanism when the
choice is binary and the designer may use non-trasferable punishments
to persuade agents to reveal their private information. The designer
faces a dilemma — a punishment may induce a more correct choice,
but its cost is socially wasteful. The efficient mechanism is a weighted
majority. Weight of each individual is known ex ante and no pun-
ishments applied if preferences are relatively homogenous. Eliciting
types through punishments in order to construct type-specific weights
should occur if preference intensity is relatively heterogeneous, or if
voters preferences represent a larger population.

JEL classification: D71, D82

1 Introduction

Simple majority is the benchmark of voting systems. The seminal contribu-
tion of Rae (1969) indicates that in case of a binary choice, simple majority
has good normative properties. The key assumption in their work is that the
intensity of voters’ preferences in favor of an alternative is the same. This pa-
per revisits the question of normative performance of various voting systems
under the assumption that voters may differ in the intensity of preferences,
and that interpersonal comparisons are possible.

As in any voting mechanism, monetary transfers are not allowed. The
main premise of this study is that voters may be punished, and thus pun-
ishments can be a part of the mechanism’s design. A benevolent designer
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faces a dilemma — punishments can motivate voters to reveal their prefer-
ences, facilitating a correct assignment, but at the same time they represent
an unrecoverable welfare loss.

There are real-life examples in which preference intensity can be expressed
in a wasteful way in a collective choice context. Consider repeated voting
with a supermajority — voters are locked until the support for one of the
alternatives reaches some supermajority, or the support for the other one falls
below some minimal fraction of voters. A form of a War of Attrition ensues,
in which waiting time imposes a cost on participating voters, and this cost is a
pure welfare loss. A conclave with supermajority 2/3 is used to select a Pope
— the leader of the Roman Catholic Church. Many hiring committees vote
repeatedly until one of the candidates gathers enough support. Jury trials
use a similar procedure of repeated voting until all jurors agree on a verdict.
Influencing political decisions through lobbying also falls into the category
of environments studied here: non-cooperative lobbying efforts, wasteful as
such, translate into a higher probability of winning. Once it is recognized
that imposing wasteful efforts is available in the designer’s tool-box, one
may contemplate very exotic voting rules, furnished with completely artificial
punishments.

This paper characterizes the efficient mechanism for both net efficiency,
which includes the cost of penalties in welfare calculation, and allocative
efficiency, which does not (and any convex combination between the two).
The main result is that regardless of whether the voting mechanism should
seek to reveal and use voters’ preferences, an efficient mechanism always takes
a form of weighted majority. The main dilemma faced by the designer revolves
around the question of whether these weights should be type-dependent, and
thus whether voters should be incentivised to reveal their types.

The solution to this dilemma depends on the level of dispersion, or hetero-
geneity in voters’ preferences. At this stage, it is useful to distinguish between
the ex post heterogeneity, which refers to the dispersion of the realized pref-
erences, and the ex ante heterogeneity, which is concerned with how likely
those randomly chosen preferences exhibit high dispersion. For example, the
classical environment studied by Rae (1969) is bipolar; namely, some agents
support one alternative while others support the other one, but the distribu-
tion of preferences, conditional on supporting one alternative, is degenerate
at one point. There in no heterogeneity, ex ante or ex post. However, if this
distribution is non-degenerate, and thus there is some ex ante heterogeneity,
the actually realized preferences may be dispersed or not, generating high or
low ex post heterogeneity.

If net efficiency is the designer’s objective, then the level of ex ante het-
erogeneity in preferences is the key determinant of whether extracting infor-



mation from the voters is desirable.

For example, if intensity of preferences is not ex ante heterogeneous
enough, in the sense of the reciprocal hazard rate being decreasing, then
improving the likelihood of selecting a better alternative is not worth the
associated social cost of screening. Consequently, the efficient mechanism is
a weighted majority with weights known ex ante. It does not extract any
information and does not apply any penalties. In addition to this, if the
environment is symmetric, then these weights are equal, and the mechanism
is the old-fashioned simple majority. On the other hand, if intensity of pref-
erences is ex ante heterogeneous enough, meaning that the reciprocal hazard
rate is increasing, the efficient mechanism extracts information from the vot-
ers and uses it to construct type-dependent weights. Penalties are needed to
create incentives for the voters to reveal their types. A simple mechanism
of a Vickrey—Clarke-Groves type implementing the net efficient outcome in
dominant strategies is easy to characterize.

If the designer concentrates only on allocative efficiency, for example when
voters in the committee represent a wider population, then the cost of the
penalty does not matter in welfare calculation. Weights ought to be type-
dependent.

This paper also explores the role of ex post realization of preference in-
tensities. Firstly, in any efficient mechanism more agents supporting one al-
ternative increases the chances of selecting this alternative.! This is a strong
result as it does not depend on any extra conditions. Secondly, if the recip-
rocal hazard rate is increasing, so that ex ante heterogeneity is high enough
for the preference intensity to matter, then higher preference intensity leads
to higher chances of this alternative being selected. Thirdly, if the recipro-
cal hazard rate is increasing, then ex post heterogeneity of preferences also
matters, but the relationship is difficult to capture intuitively as it depends
on the curvature of the reciprocal hazard rate. Having voters with more dis-
persed realized preferences supporting one alternative increases the likelihood
of selecting their alternative, if the reciprocal hazard rate is convex. Having
voters with less dispersed realized preferences supporting one alternative in-
creases the likelihood of selecting their alternative, if the reciprocal hazard
rate is concave.

Also, this paper proposes that some mechanisms with penalties which
are not efficient but are realistic, may perform better than majority with
no penalties. An example of a simple conclave presented in the last section
achieves a higher welfare than simple majority, even if the cost of penalties
is fully taken into welfare account.

n the following weak sense: sometimes increases, and never decreases



Literature, further results and assumptions

Multiplayer decision mechanisms with penalties are used in many real-life
applications, and there is literature that analyzes their positive or norma-
tive properties. These mechanisms are generally not efficient, but it is worth
knowing the magnitude of the welfare loss associated with using these mech-
anisms relative to the efficient ones. In fact, this question motivated the
current study, and an example is presented in the last section. Ponsati and
Sakovics (1996) are concerned with properties of equilibria in multiplayer
Wars of Attrition with supermajority. Kwiek (2014) is focused on welfare
performance of these kind of mechanisms. In contrast to Kwiek (2014), the
model below considers setups with private information, all incentive compat-
ible mechanisms, and it looks for efficient mechanisms that take into account
the penalty cost. Although Kwiek (2014) and the model below are differ-
ent, the gist of comparative statics is similar, namely in both models simple
majority is inefficient, provided that preference intensities are ex ante hetero-
geneous enough, or voters’ decision has an externality on a wider population.
Kwiek et al. (2015) experimentally study positive and welfare properties of
conclaves.

The literature on efficient social choice with privately known preferences
can be divided into two branches: those discussing environments permitting
transfers and those where transfers are not allowed. The present study ties
together those two strands in the following sense. On one hand, the efficient
mechanism will take a form of a generalized majority rule, close to the re-
sults known from the no-transfers literature. On the other hand, agents may
be incentivised by facing a prospect of suffering penalties, very much like
in the case when transfers are allowed. For example, incentive compatibil-
ity constraints are similar to those in auction literature, and many of these
techniques can be adopted to the present case. The rest of this section elab-
orates on how these two strands of literature connect with the results and
assumptions of the model.

The analysis below draws heavily from optimal auction theory (e.g. Vick-
rey—Clarke-Groves, Myerson (1981), McAfee and McMillan (1992)). This
literature postulates that individuals have single-dimensional private infor-
mation about the values of the alternatives and their utilities are quasilinear
in money. One benchmark assumption is that private information is statisti-
cally independent across individuals. We adopt this assumption too, keeping
in mind that it is questionable in many real-life cases of committee voting.
Committees may be viewed as a platforms for deliberation, designed to al-
low pooling dispersed information. However, in the model below, an agent
cannot learn anything about her values from other agents.



McAfee and McMillan (1992), followed by a series of more recent pa-
pers by Hartline and Roughgarden (2008), Yoon (2011), Condorelli (2012)
and Chakravarty and Kaplan (2013) are closer to the analysis below. They
share one feature, namely that the participants’ bids, or efforts, are a social
waste. Thus a benevolent mechanism designer faces a trade-off. They can
either elicit information to assign the good correctly and waste those efforts,
or forgo the former to save the latter. From the perspective of the current
study, the following specific points ought to be mentioned. Yoon (2011) al-
lows an intermediate case between allocative and net efficiency, which, in
the context of a voting environment, can be interpreted naturally as a type
of representative democracy; the paper also provides comparative statics in
which ex ante heterogeneity takes a center stage. Condorelli (2012) consid-
ers an interesting problem of interdependent values (although statistically
independent signals), and identifies the whole Pareto frontier rather than
just utilitarian welfare. Chakravarty and Kaplan (2013) assume that agents’
private information may also affect their individual marginal cost of penalty.

The key difference is that these papers look at an assignment problem —
how to allocate a rivalrous good among competing individuals. In contrast,
the study below considers a collective choice problem, giving rise to different
forms of externalities among the agents. For example, in the spirit of the
classical Samuelson condition for public goods, the efficiency condition in-
volves a sum of individual benefits over all agents supporting an alternative,
although — since this is an incentive problem — these individual benefits are
net of costs of incentive provision.

Another difference is that private information is multidimensional in the
model below. Apart from the preference intensity, individual voters are as-
sumed to have private information about two other aspects: which alternative
they prefer, and the marginal cost of punishment. As far as the the latter
is concerned, Chakravarty and Kaplan (2013) also assume that agents may
differ in their individual marginal costs of effort, but here we assume that
value and marginal cost are two different random variables, possibly statisti-
cally independent. The environment is still relatively tractable so incentive
compatibility can be framed within the usual integrability condition.

The second strand of literature — the one emerging from political economy
and voting without transfers — starts with the aforementioned seminal paper
by Rae (1969).2 More recently, some articles investigate how preference in-
tensities can be reflected in voting mechanisms. Casella (2005) proposes a
procedure in which voters can store their votes for future use in a sequence
of elections, thus creating an opportunity to use accumulated votes on issues

2See also May (1952).



of a particular importance. A similar idea of linking different social choice
problems to enhance incentives appears in Jackson and Sonnenschein (2007).

The literature closer to the model below analyzes environments with one
independent voting problem. The paper by Azrieli and Kim (2014) asks a
question what mechanism is efficient in the binary choice environment with-
out transfers. The only difference with the current paper is that they do not
permit the use of penalties. Their efficient mechanism is a weighted majority.
In the current paper, when ex ante heterogeneity of preference intensities is
low, the penalties should not be used and therefore the mechanism is exactly
the same as the one of Azrieli and Kim (2014). Otherwise, penalties ought
to be used to extract information about types, and consequently the weights
are type-dependent.

Drexl and Kleiner (2013) is a study that occupies the gap between transfer
and no-transfer literature. They assume that transfers are allowed, but due to
anonymity and other assumptions, monies collected cannot be redistributed
back to the voters. Consequently, potential payments of the voters have to be
interpreted as penalties like in the model below. They focus on the case low
ex ante heterogeneity, thus characterizing the efficient mechanism as weighted
majority without employing any penalties. In contrast to this, the current
study attempts to identify the cases under which nontrivial penalties are used
efficiently, such as in high ex ante heterogeneity case, or when voters’ decision
has an externality on a wider population. Penalties are not interpreted as
monetary payments, and thus the marginal cost is not necessary one, or even
commonly known. The current model generalizes in many aspects a result
reported in Kwiek and Zhang (2013).

There are other papers which deal with efficient mechanisms when trans-
fers are not possible. For example, Schmitz and Troger (2012) consider cor-
related signals, while Apesteguia at al. (2011) and Gershkov at al. (2014)
analyze the case of more than two alternatives.

2 Environment and welfare criteria

Physical environment consist of the following elements. One alternative is to
be selected from the set { A, B}, and k will denote a generic alternative. There
are n > 2 wvoters. The key postulate is that there exists a way to penalize
individuals. Namely, assume that an individual voter ¢ can be forced to suffer
¢; units of a penalty. One may hypothesize that there are different types of
penalties (waiting, tedious tasks, electric shocks, etc.), and the mechanism
designer may have an option to select one, but for now the penalty type is

fixed.



Preferences

Preferences of each voter are represented by three components. The first
element, a; € {A, B}, is called direction of preferences and describes which
alternative voter i prefers. Sometimes we will refer to the set of players
supporting k as party k. The second element describes relative intensity of
this preference. Intensity is denoted by z; > 0, interpreted as how many units
of penalty this voter is willing to endure at most, and still select her preferred
alternative over the other alternative if it is received without penalty. The
third element is z;, the marginal cost of penalty to individual %.

The ultimate net utility of voter ¢« who is asked to suffer ¢; units of penalty
is

zi (x; — ¢;) if her preferred alternative is selected
—2iC; otherwise

Notice that the top line can also be written more conventionally as v;—z;¢;,
where v; = z;x; could be called an absolute intensity of preferences. As it
will become clear later, x; and z; will be values of some random variables
which may or not be statistically independent. It is also assumed that the
expected value of v; conditional on z; is increasing in z;.

Information

The final element that has to be specified in order to complete the description
of the model is the information available to the voters and to the mechanism
designer. We assume that all three elements of voter’s preferences are her
private information. That is, voter i knows the realization of random vari-
ables (a;, x;, z;) called the type of voter i, but other voters and the mechanism
designer know only its joint distribution.

Types are independent across individuals. The intensity and marginal
cost might not be independent for a given individual; we assume that the
p.d.f. and c.d.f. of z; conditional on z; is f; (z;|z;) and F; (z;|z;), while the
marginal p.d.f. of z; is fx, (x;). For any z;, function F; (z;|z;) is continuous
and strictly increasing for x; € [0, z; (z;)], where Z; (2;) could be infinity. It
is assumed that a; and (x;, z;) are statistically independent, but this is only
for transparency of notation.

Welfare criteria

In the leading case, this paper will adopt utilitarian welfare criterion as a
benchmark capturing interpersonal comparisons of intensity of preferences.



That is, social welfare is the sum of individual utilities. However, checking
any point on the Pareto Frontier will not pose any difficulty, see footnote 3.

There will be two special cases of interest: net welfare and allocative
(gross) welfare. Allocative welfare achieved by a mechanism is equal to
> ick Vi, if alternative k is selected. According to this criterion, A should
be selected if and only if > ;c 4 v; > > ;cp v, regardless of the penalties en-
dured by the individuals. Thus, the type of the penalty applied to individuals
is inconsequential. On the other hand, net welfare is defined as

n
Z Vi — Z Z;C;
ick i=1
if alternative k is selected, and ¢y, ..., ¢, units of penalty are applied. This
notion takes into account the costs of voting suffered by the participants.

Net welfare seems to be a more correct measure, since it takes into ac-
count all social benefits and costs of selecting an alternative. However, there
could be cases when the cost of penalty should be ignored. Arguably, the
active voters may be just representatives of districts of voters who do not
participate directly. Consider a model in which (a;, x;, z;) is a district-specific
type. That is, districts are internally homogeneous, but they differ from each
other. Each district ¢ sends a representative with type (a;, x;, 2;) to sit in the
committee. In particular, let the proportion of district’s inhabitants who go
to the committee be A\, and let 1 — A of them stay home. In other words, only
fraction A\ of the population has to pay the penalty associated with voting,
while the rest free rides on those who are subjected to this penalty. The cor-
rect welfare is 3 ;¢ v; — A ng‘zl zjcj. If A =1, then this expression results in
net welfare, and if the fraction of representatives in the district is negligible,
A = 0, then this expression becomes allocative welfare as the other polar
case.?

The interest below will be in incentive compatible mechanisms maximiz-
ing ex-ante welfare for a given .

3 Incentive compatible mechanisms

The mechanism designer specifies a Bayesian game, in which the voters play
a Bayesian Nash equilibrium. By revelation principle any mechanism can be

3Instead of assuming that each individual or district is of the same size, one may con-
sider a more general formulation, for example the one in which the size of the population in
district ¢ is m;, and the fraction of representatives is a district-specific A;. In what follows,
the weights (A, 1 — X) would be replaced by (A\;m;, (1 — A;) m;). Vector (my, ..., my,) could
also be interpreted as weights attached to different districts in a welfare function, tracing
different points on the Pareto Frontier.



mimicked by a direct revelation and incentive compatible mechanism. In such
a mechanism each player simultaneously reports their type, having incentives
to report truthfully, and then the mechanism executes the outcome.

Let a = (ay,...,a,) be the profile of true preference directions, let x =
(21, ..., x,) be the profile of true intensities and z = (z1, ..., z,,) the profile of
true marginal costs. Let @ = (ay, ..., a,) be the profile of reported preference
directions, and let £ and z be similar vectors of reported intensities and
marginal costs. Reports may be different from true values. To shorten the
notation, we will denote the triplet of types as r; = (a;, x;, 2;); likewise for
reports and profiles: 7; = (a;,Z;, 2;), r = (a,2,2), 7 = (a,Z, 2).

The direct revelation mechanism is a collection (pa, pg, c1, ..., ¢n), Where
all elements are functions of the report profile #. The mechanism works as
follows. After the agents have reported their preferences to the mechanism,
alternative k is eventually selected with probability py (7) € [0, 1], where
obviously p4 () + pp () = 1. Then, agent ¢ has to pay a non-negative and
non-transferable expected penalty, ¢; (7) > 0. The expected utility of voter
1, whose preference type is r; while the report profile of types was 7, is

2i (Tipa,; (1) — ¢ (7))

Just to repeat, p,, (+) is the probability of selecting the alternative that voter
1 prefers.

Define P,, (7;) = E,_,pa, (75, 7—;) to be the expected probability of select-
ing i’s favorite alternative if her report is 7; (not necessarily truthful) when
all other voters report truthfully, and r_; = (r1,...,7_1, 711, ..., 7); define
C;(r;) = E,_,c; (;,7—;) to be the expected penalty in this situation; finally
define

7 (Tiyri) = 2Py, (1) — Cy (1) (1)
and
i (1) = (i, 13) (2)
Clearly, the expected utility of voter ¢, if all voters other than i report truth-
fully, is simply z;7; (7;,7;), and the expected utility when voter i reports
truthfully along with everyone else is z;m; ().

Proposition 1. The direct revelation mechanism is incentive compatible if
and only if all conditions hold:

1. 5Py, (ai,x5,2) >0

0
Bri

2. aig;iﬂ-i (aivxi’ Z,) = Pai (ai7xi7 Z,)

3). Pa ((ZZ', 0, Zl) Z Pai (—CLZ', O, Zl) (I?’Ld OZ ((ZZ', 0, Zl) = Cl (—(ZZ', 0, 2’1)

i

9



4. m (a;, x;, ) and Py, (a;, x;,+) are constant functions.

Points 1 and 2 of this Proposition ensures that individual ¢ does not have
incentives to misreport her intensity x; and they are standard in mechanism
design literature. Point 3 makes certain that voters have no incentives to
misreport their directions. Condition 4 guarantees that voters will not lie
about their marginal cost of penalty; it will also allow to simplify notation
and write m; (a;, z;), P, (@i, x;), C; (a;,x;) and p,, (a,x).

4 Welfare maximizing mechanisms

The initial focus of the analysis will be the case of net efficiency, A = 1. It
turns out that, as in McAfee and McMillan (1992), the core criterion for net
efficiency involves the reciprocal hazard rate associated with the distribution
of x;. Specifically, let H; (-) be defined as

1-F (IUz’Zz)

For example, if z; and x; are statistically independent, then H;(-) is the
conventional reciprocal hazard ratio of x; multiplied by a constant z{ = E, z;.

One can express the payoff of member ¢ of the committee only in terms
of the allocation probability and the payoff of the indifferent type. This will
be asserted in the following series of Lemmas.

H; (z;) = Ezz

Lemma 1. Net expected payoff of voter i in an incentive compatible mecha-
nism 1is

Ni = ZfEaiﬂ'Z‘ (ai, 0) + Eai7XiPai ((li, ZEZ) I‘IZ (ZL‘Z) (3)

Equation 3 may be altered to allow for a stronger allocative efficiency
concern. That is, one can consider the case of A < 1. Recall that each ¢ may
be interpreted as a district sending representatives who would experience the
penalties employed by the mechanism, for the good of the population who
stays at home. Clearly, the expected payoff of the representative of district ¢
is given by equation 3. The payoff of each constituent who stays home and
does not suffer the penalty is z;x;P,, (a;, z;). Define the expected marginal
penalty cost of agent ¢, conditional on z;, as

Zi (x;) = / zifzx, (zil7) dz;
0
The expected payoff of a stay-at-home agent is therefore E, xx;Z; (x;) pa, (a, z).

10



Adding together the payoff of the representative, weighted by A, and the
payoff of the stay-at-home agent, weighted by 1 — A, leads to a weighted
average

The expected payoff of district ¢ has a very similar form to the one in equa-
tion 3.

Lemma 2. Fiz any 0 < X\ < 1. The expected payoff of district i in an
incentive compatible mechanism is

N Eg,mi (a;,0) + By xPa, (a, ) Hix (x;) (5)

A number of specific cases can be described using just function H;y (-).
But the general characterization requires further modifications. Thus, for

every q € [0, 1], define ¢; (¢) = H;a ((in)fl (q)), where (Fy,)”" is the inverse
of the marginal c.d.f. of ;. Furthermore, let ®; (q) = [/ ¢; (s) ds, and let

[i (q) = conv (®; (¢)) (6)

be the convexification of ®;, and let v; (¢) = I'; (¢). Obviously, all these func-
tions are derived from the primitives of the environment, hence exogenous,
and known to the designer.

The next result also gives the payoff of district ¢, and therefore is another
version of the previous Lemmata. However, function H;, (-), which may be
decreasing, is replaced by ~; (F, (+)), which never is.

Lemma 3. The expected payoff of district i can be written as
N; = A2{ Eq,m; (04,0) — Ni + By, o, Pa, (a3, 2:) vi (Fx, (i) (7)
where A; > 0 is defined as
1
aPa. A, T
N= B [ 2P @ (g () - T (P @) 9
0 %
The main result follows

Theorem 1. Fiz any 0 < A < 1. The mechanism that selects alternative A
with probability 1 if and only if
S v (Fx (@) = Y v (Fy, (7))
ia;=A j:aj=B

is efficient for this \.

Theorem 1 looks obscure. The rest of this section will outline two special
cases that lead to qualitatively different results. Broader ramifications will
be discussed in the next section.

11



Decreasing H;) (-)

It turns out that whether function H;y (+) is increasing or decreasing is of
key importance to the type of the mechanism that should be selected by the
efficiency-motivated designer.

Assume that function H;) (-) is decreasing. In this case, function ¢; is also
decreasing, and thus ®; is concave. Its convexification in expression 6, I';, is
a straight line, and so ~; is a constant equal to ®; (1). This, in turn, is equal
to the expectation E,, H; (z;), which, finally, is equal to the expectation of
absolute intensity vf = E,,z;Z; (z;) for any 0 < A < 1.4

Corollary 1. Fiz any 0 < A < 1 and suppose that H;y (-) is decreasing for
every i. The mechanism that selects alternative A with probability 1 if and

only if
2o vz 3
A B

A= Jiaj;=

is efficient for this .

This condition can be assessed regardless of the reported intensities.
Only reported directions matter. The mechanism gives potentially different
weights to voters, but these weights v{, ..., v; are known ex ante. Obviously,
no penalty is needed.® If values v¢ are the same for all voters, then the
efficient mechanism is a classical simple majority.

Corollary 2. Fiz any 0 < XA < 1 and suppose that H;y (+) is decreasing for
every . If agents’ expected values v{ are constant for every i, then unweighted
simple magority is efficient for this \.

Increasing H;) (+)

On the other hand, if H;, (+) is increasing, then convexification in expression

6 is trivial and yields the original reciprocal hazard rate itself, v; (Fx, (z;)) =
H;y (z;). We obtain

4This is a variant of a known result that the expectation of the reciprocal hazard rate
is equal to the expectation of the random variable itself. Observe that

Ve = / Il/ 2ifz,x, (zil2:) dz f (x) d; :/ zi (B2, 2 fi (i]2:)) doy =
0 0 0
= —zE 2 (1 - F (w]2)) 50 +/ (B2 (1= Fi(23]2))) do; = Hy
0

where integration by parts was used. Then Hf, = AH{ + (1 — \) V©.
®Azrieli and Kim (2014) obtain the same criterion, but they assume that penalties
cannot be used.

12



Corollary 3. Fiz any 0 < X\ <1 and suppose H;y (-) is increasing for every
1. The mechanism that selects alternative A with probability 1 if and only if

Z Hz)\ xz Z Z H])\ l’] (9)

iia;=A j:a;j=B
is efficient for this \.

This class of mechanisms asks agents to reveal not only their preference
directions but also their relative preference intensity. There are many mech-
anisms that can realize allocation function in Corollary 3. Among them,
there is a version of Vickrey—Clarke—-Groves mechanism, henceforth VCG),
which implements outcomes in dominant strategies. This mechanism works
by having the agents report their types, and the mechanism then selecting
alternative £ if and only if

Z iy (z Z HJ/\

Z(lz Jajf

Those who supported the losing alternative are not subjected to any penalty.
Those who supported the winning alternative k£ are subjected to penalty
¢ix (@, ) defined by

HM(CM(GJ))ZmaX{HM(O)a Yo o Hp(z)— Y }HjA(%‘)} (10)

jiaj=—k {j:a;=k,j#i

Proposition 2. The mechanism VCG), is dominance solvable and it achieves
the allocation function defined in Corollary 3.

These two special cases of decreasing and increasing H;, do not cover all
possibilities. When H;, is not monotone, then the VCG) constructed from
~; could be used.

5 Comparative statics

This section will consider only a symmetric case, where probability distribu-
tions are independent of 1.

Recall the main object of the analysis in expression 4. The focus now
is in identifying factors that affect the shape of H) (-), which — as was seen
above — is the key determinant of which mechanisms are efficient.

13



1.4

SN

Figure 1: Weibull distribution for different shape parameters 7

Statistical independence

Suppose that variables x; and z; are statistically independent, and without
loss of generality, let Ez; = 1.

Start with the case of net welfare, A = 1. In other words, H, (z;) =
H(xz;) = (1= Fx(x;))/fx (x;). Certainly, many distributions commonly
used in examples have a decreasing H and therefore fall under the remit
of Corollaries 1 and 2. It is sometimes claimed that this is the more likely
case®. However, as soon as we establish a link between the slope of H and
the notion of dispersion of values, this becomes an object of interpretable
economic quality, which cannot be assumed away, a point made by Yoon
(2011).

The argument will be illustrated with the following parametric example.

Example 1. Assume that voter’s direction of preferences is equally likely
to be A and B; intensity x; (and v;) is distributed according to Weibull
distribution, the same for all . That is, let Fx (z;) = 1 —exp (— (x;/p)"),
and therefore H (x;) = (u"/n)x; ", where n > 0 is the shape parameter,
and g is the scale parameter set up so that the mean is equal to one, y =

1T (14 1/).

Weibull density function for four different shape parameters is presented
in Figure 1. Shape parameter 7 controls ex ante heterogeneity of individual
preferences. The greater this parameter, the more homogeneous within each
party the intensity of preferences becomes, and the closer to the classical
bipolar framework of Rae (1969) this environment is. Conversely, if this
parameter is getting closer to zero, then the more heterogeneous each party
is likely to become. In other words, the more likely it is that the individual

SFor example, McAfee and McMillan (1992) write that “H’ < 0 can be thought of as
the more likely case.”
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Figure 2: Best allocative welfare (black dots) and best net welfare (gray
dots). Committee N = 24.

voters in a party are either almost indifferent, concentrated around zero, or
if they are extreme then they are very extreme. The slope of function H (x;)
depends on 7. If n > 1, then the reciprocal hazard ratio is a decreasing
function and simple majority is net efficient. If n < 1, then H (-) is increasing,
and screening for types along the lines of Corollary 3 is net efficient.

This can be presented graphically, as in Figure 2. The curves show welfare
performance (relative to simple majority) of three different mechanisms for
different levels of heterogeneity of preferences, in a committee consisting of 24
voters. The gray dot curve illustrates the level of net welfare of a mechanism
achieving the best net welfare. This mechanism could be VCG; if n < 1,
and simple majority if n > 1.

A word of caution is in order here. The above statements, that ex ante
heterogeneity of preference intensity is a key parameter, could be misunder-
stood, as not just any type of dispersion measure of X; is important. It is
certainly possible to give example of two distributions such that the first one

15



has a greater variance and negative H’, and the other one has lower variance
and positive H'. By high heterogeneity we mean a particular relationship
between central/indifferent values and tail /extreme values.

Formally, suppose that X has a c.d.f. F, and Y has an exponential
distribution with a c.d.f. G and any mean. The first known result is the
following: X has an increasing reciprocal hazard rate if and only if is smaller
than Y in the convex transform order, Y <. X (i.e. G7'(F (z)) is convex
in x). Another result is that ¥ <. X together with EX = EY implies
that X second order stochastically dominates Y. These two results prove
the following statement.

Proposition 3. X has an increasing reciprocal hazard rate, then it second
order stochastically dominates Y which has an exponential distribution with
the same mean. X has a decreasing reciprocal hazard rate, then it is second
order stochastically dominated by such Y .

Generalizing this analysis to any A € [0, 1] is not a major complication.
Now, H) (z;) = N(1— F (z;))/f (x;) + (1 — A) z;. For example, the black
dot curve in Figure 2 shows the allocative welfare of a mechanism achieving
the best allocative welfare, A = 0. These welfare levels are higher than
for the best net welfare, or any other mechanism. However, as n increases
and the preferences converge to the classical bipolar Rae (1969) case, the
best allocative welfare mechanism converges in its performance to simple
majority.

5.1 Correlation

Suppose that z; and z; are not independent. Again, consider first a more
involved case of net welfare, A = 1. Function H, (z;) can be written as

Hy (z:) = H (z;) = /000 ZZW

To present a clear comparative statics, one may follow Chakravarty and
Kaplan (2013) by assuming a non-stochastic relationship between z; and
x;. Namely, suppose that intensity of preferences is a random variable with
a c.d.f. Fx (z;), but also assume that the marginal cost is determined by
some monotonic function, z; = §(z;), where Ef (x;) = 1 without loss of
generality.” With this, the conditional c.d.f F' (x;|2;) is zero if z; > 3 (;) or

"If indeed such is the relationship between z; and z; then Z; (z;) = B (2;). Recall also
that absolute value x;0 (x;) is assumed to be increasing in relative value x;.
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one otherwise, and therefore

1 00
H (xl> = fX (xl / szZ (Zz) dZZ
1

=fXxZ/ﬁ ) fx (s

For example, if z does not vary and so 3 (+) is a constant function, then H (+)
becomes the usual reciprocal hazard rate.

Suppose that the association between z; and z; is positive, meaning that
[ is an increasing function. How does this assumption affects the shape of
H (-) in comparison to the conventional reciprocal hazard rate? Notice that

/Owﬁ(S)fx(S)dSZEﬁ(S)Z

and hence f4 (z) = B (z) fx (z) itself is a density function, rotated counter-
clockwise relative to fx (z). An immediate implication is that in the interior
of the support Fly < Fx, where Fy is the c.d.f. associated with f4 (). This
proves the first part of the following result; the second part is obtained in
the same way.

Proposition 4. Assume that x is the interior of the support. If B is increas-
ing then H (z;) > (1 — Fx (x;)) /fx (x;); if B is decreasing then H (x;) <
(1= Fx (%)) / fx (@)

Next proposition is also easy to obtain and its proof is in the appendix.

Proposition 5. Suppose that (3 is increasing; if (1 — Fx (x;)) / fx (z;) is in-
creasing, then so is H (x;). Suppose that [3 is decreasing; if (1 — Fx (x;)) [ fx (z;)
is decreasing, then so is H (z;).

If mechanism designer’s objective is allocative welfare then H), (-) is af-
fected by the stochastic relation between x; and z; through the expression of
absolute value ;7 (z;). Recall that z;Z (z;) is assumed to be increasing in
x;, even if Z () may be mildly decreasing. Thus, Corollary 3 applies.

6 Ex post realizations

A concept of dispersion for vectors is needed in this section. Formally, vector
r € R" is smaller in the majorization order than & € R", denoted = < Z,
if > =30, % and Y 12 < ZZ 1 Zp) for j =1,. — 1, where zy;
denotes the ith largest element of vector x.
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Consider the following thought experiment. Compare two different real-
izations of preference intensities for party £ with the given number of sup-
porters, denoted z = {x;},, _, and & = {¥;},, ;. Suppose that z < 7. In
other words, both realizations represented by these preference intensities are
equivalent from the allocative efficiency perspective as they generate the same
welfare for party k£, but that the latter is more dispersed than the former,
representing a realization that is more ex post heterogeneous. Inspecting
condition 9, we see that the curvature of H) (-) plays a role. Namely,

Proposition 6. Suppose that Hy (-) is increasing, and suppose that x,% are
two different realizations of preference intensities in party k. If Hy () is
concave, then x < T implies that Y., Hx (x;) > Yi0,= Hx (%;). Thus
replacing x with ¥ weakly decreases the chances of selecting alternative k. If
Hy (+) is convex, then replacing this x with this T increases those chances.

How can the curvature of H) (-) be linked to some economically significant
qualities? The answer to this question is much less clear-cut than in the
previous discussion about the monotonicity of H) (). Consider only the polar
case of net efficiency and independence: this question boils down to when
the reciprocal hazard rate of preference intensities, (1 — F') /f, is convex or
concave. In the Weibull example presented above this function is concave.
Another parametric example is generalized Pareto distribution which has a
linear reciprocal hazard rate:

Example 2. Generalized Pareto distribution with a c.d.f. F(z) = 1 —
(1+&x/(1—€)"% assume that 0 < z for 0 < £ < 1, and 0 < z <
(€ —1) /& for € < 0 (the mean is always 1). The corresponding reciprocal
hazard rate is H (z) = (1 —¢) 4+ &x. The comparative statics depend on
the shape parameter &; if it is positive, then the reciprocal hazard rate is
increasing, and if it is negative then it is decreasing.

Intuitively, the curvature of the reciprocal hazard rate appears to be
linked to dispersion measure of the distribution, in that that the convex
(1 — F) /f is associated with more dispersed values. To my knowledge, how-
ever, there is no established stochastic order that captures this.

In another polar case, the one of full allocative efficiency, we have Hy (z;) =
x;Z (x;) and the curvature of this absolute value as a function of relative value
x; is of interest. If x; and z; are independent then Hy (-) is linear. If Z(+)
is decreasing (and linear), then Hj (-) is concave; if Z (-) is increasing (and
linear), then Hy (-) is convex.

The above analysis suggests three layers of the argument relating to ex
post realization of preference intensities in an efficient mechanism. Infor-
mally, they can be stated as:
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1. Is more agents in party k a good news for the likelihood of selecting its
alternative? The answer is affirmative, and it does not depend on any
extra conditions.

2. Suppose that the number of members in party £ is given. Is having
members with higher preference intensity a good news for the likeli-
hood of selecting their alternative? The answer is affirmative, if H) is
increasing. Intensity is irrelevant if this function is decreasing.

3. Suppose that the number of members in party k is given, and they
have a given total intensity, >_;.,.—x ;. Is it true that having voters with
more concentrated preference intensities in party k (in the majorization
order) is a good news for the likelihood of selecting their alternative ?
The answer is affirmative, if, in addition to H) being increasing, it is a
concave function. Likewise, less concentrated preference intensities is a
good news, if H) is a convex function.

Azrieli and Kim (2014) make an observation similar to point 1 above. They
say that “only the ordinal ranking of the two alternatives as reported by
the agents matters for the outcome”. In the current paper, the word “only”
should be removed, as reporting preference intensity matters under some cir-
cumstances. But the gist is that the efficient mechanism always responds pos-
itively to the number of supporters. Another interpretation of this point in-
vokes the Samuelson condition for optimal allocation of public goods. Namely,
one needs to sum the benefits to all agents together in order to calculate the
correct rank of each of the two alternatives. The only twist in the present
paper is that those benefits are net of the costs of a nontrivial incentive
provision.

The analysis of McAfee and McMillan (1992), Yoon (2011), Condorelli
(2012) and Chakravarty and Kaplan (2013) underline the importance of the
the monotonicity of function the reciprocal hazard rate and the role of ex
ante heterogeneity of preferences, exactly along the lines of point 2 in the
above list.

However, the observations made in point 3 do not arise in those studies.
There is no reporting of preference intensities in Azrieli and Kim (2014) or
Drexl and Kleiner (2013), and no Samuelson condition in the papers in the
tradition of McAfee and McMillan (1992).

7 Concluding remarks

One conclusion of this paper, relevant for real-life designers, can be intuitively
summarized as follows: if all voters are likely to have relatively similar stakes,
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then asking them for ordinal preferences is efficient, as in weighted majority.
If, however, there is likely to be a lot of fairly indifferent voters and a few,
but extreme ones (ex ante heterogeneity) or if representatives’ decision has a
strong externality on a wider population, then the designer ought to consider
more complicated rules, that in particular involve incentives.

One of the aims of this paper is to assess the welfare performance of some
versions of real-life decision mechanisms that employ penalties, especially
relative the best possible mechanisms. Hence consider simple conclaves, as
one such example of a mechanism that is not efficient in general. Conclave is
a mechanism in which voting occur repeatedly until sufficient supermajority
is reached. The following is one possible way to formalize this in the context
of two alternatives.

Assume that time is continuous and all voters are equally likely to support
A and B. All voters start supporting their preferred alternative by pressing
the relevant button A or B. As time passes, they can decide to irreversibly
withdraw their support. Supermajority required is n — m + 1 where a key
parameter m € {1,...,(n — 1) /2} is a minimal blocking minority (n odd).
If m voters, or more, still vote for an alternative then the other alternative
does not yet reach sufficient supermajority. As soon as the support for one
of the alternatives falls below m, the other alternative is declared the winner
and the game ends.

To complete the description of the extensive form game, one has to specify
what is observable as the game progresses. For example, in many real-life
situations, players could observe how many voters supported an alternative
at any point in the game. This creates a very complicated game in which
the shape of the allocation function, py (a, ), is unclear. Since this function
is the key tool in the analysis, a hard result seems difficult to derive.

Consider however a version of conclave that forms a simple timing game.
Suppose that voters are locked in individual rooms and do not get to observe
initial profile of support or anything about its evolution. This environment is
symmetric, and so there is an equilibrium with symmetric strategies. Higher
report translates into higher value. It turns out that in this case we can
express the equilibrium allocation function quite easily.

Define Z; = (1 — 2 X ljea) x;, ie. F; it is equal to x;, except that it has
a negative sign if and only if ¢ € A. Sort voters from the most negative z;
to the most positive. Define two pivotal voters, the mth one from the left
and the mth one from the right, with values Z(,,) and Z(,—m41), respectively,
where Z(,, is the mth order statistic of vector (1, ..., Zy).
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The allocation function then is

B {1 if Z(m) + Tn-m41) <0
pa(a,z) = .
0 otherwise

In particular, there are three possible cases. Either both Z(,,) and Z(,—m41)
are negative, indicating that A has a supermajority support from the begin-
ning; or both are positive, indicating that B has a supermajority support
from the beginning; or Z(,) is negative and Z(,—y41) is positive. In this
last case, A is selected if and only if Z(,,) is greater in absolute terms than
Z(n—m+1). All three cases are captured by inequality Z () + Zm—mt1) < 0.

In addition to the best net and the best allocative mechanisms, Figure 2
illustrates the welfare performance of conclave with supermajority 80%. Its
allocative welfare level is depicted as a solid black curve, while the net welfare
performance is depicted as a solid gray curve. One take-home message from
this example is that for high enough ex ante heterogeneity even this unrefined
version of conclave outperforms simple majority, even if the cost of penalty is
taken into welfare account. This example also suggests that there is a great
deal of research that should be done to study particular rules that may be
used in similar repeated voting mechanisms.
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8

8.1

Proofs

Proof of Proposition 1

Necessity. Suppose that the mechanism induces truth telling.

1.

2Py, (i, 34, 2) > 0.

Truth telling implies that (where the scaling factor z; in front is not
included because it does not affect anything)

mi(r) > T (T4,15) = 2Py, (1) — Cy (14)
= (v — 7)) Po, (13) + 2Py, (13) — C; (13)
= (x; — ;) Py, (13) + mi (14)
Hence, if x; > x; we obtain the inequality on the left in
i (r;) — m (75)

P (r) <
i (Ti) < -

< Pai (7’1)

Similarly, using m; (7;) > 7; (r;, ;) we obtain the inequality on the right.
Since this is true for arbitrary reports of direction and marginal cost,
even true ones, a; = a; and z; = z;, the function P, (a;,-,2;) is non-
decreasing.

0 _
Tziﬂ-i (ai7 Ty, Zi) - Pai (a’iv Ly, Zl)
A non-decreasing function P,, (a;,-,z;) is differentiable almost every-

where, hence continuous. We obtain the result by taking a limit z; —
ZT;.

Py, (@i, 0, z;) > Py, (—a;,0, 2;) and C; (a;,0, 2;) = C; (—a;,0, ;)

Suppose that C;(k,0,z) > C;(—k,0,2;). Then a voter whose true
type is (k, 0, z;) would have incentives to misreport the direction of her
preferences, as their payoff would be more negative if they reported
k. Hence C;(a;,0, z) = C; (—a;, 0, z;). Finally, consider a voter whose
preferences are directed towards a;. Telling the truth must be better
than stating a different party and misreporting the intensity as zero:

z; P, (ai, T, Zz) -G (au i, Zz) > x;iPy (_aia 0, Zz) -G (—ai, 0, Zz) (11)

Since penalty C; (ay, -, 2;) is non-decreasing®, we have C; (a;, x;, 2;) >
C; (a;,0,2z;) = C; (—a;, 0, 2;), and thus inequality (3) becomes

PCL (a’bxia Z’L) Z Pai (_ai707zi)

i

8This can be seen by taking the derivative of both sides in equation (2) with respect
to z; and using already established condition 2.

22



This is true for any x; and so it must be true for x; = 0.

4. 7; (a;,x;, ) and P,, (a;, z;,-) are constant.

Firstly, 7; (a;, s, i, a;, x;, ;) is independent of z; by definition in equa-
tion (1). Secondly, it is independent of the report z; too. (To see this,
fix a;, x; and note that the set of reports z; that maximize the expected
utility z;7; (a;, i, 2, a;, i, z;) does not depend on z;, by previous point.
If a certain report does not belong to this set then there is an incen-
tive to lie, which cannot be a part of equilibrium. Hence all reports
are maximizers and the function must be constant). The claim comes
from the fact that m; (a;, z;, 2;) = 7 (@i, 2, 2, @i, i, z;), and that the
right-hand side is independent of z;.

Since 7; (a;, x;, z;) is constant over z; and %m (a;, i, 2;) = P, (@i, x;, 2),
it must be that P,, (a;, z;, ;) is constant over z;.
Sufficiency. Suppose that conditions 1-4 hold.
1. Reporting true direction a;, but misreporting z; can never improve the
expected payoff (regardless of the report z;).
Consider any z; > z; and any z;. Then the condition %m (ai,s,2;) =

B
P, (a;, s, z;) implies that

i

Zq
mi(a;, T4, Z;) — i (@4, 24, Z) = / P, (ai, s, z;)ds
x;

Since P,, (a;, -, Z;) is non-decreasing, we have

/ Py, (as, 8, z;) ds < (T — ;) P, (i, Ti, 2;)
and therefore together

i (@i, T4y 2;) — i (a4, @4, Z) < (T — x;) Pa, (04, T4, 2)

Substituting in m; (a;, T;, 2;) = T; Py, (@i, i, 2;) — Ci (a4, T, Z;) implies
2 (i Py, (i, T4, 2i) — C5 (045, %4, %)) < 2 (@4, T4, %)

i

One can show a similar inequality for z; < z;. This means that re-
porting true direction a;, but misreporting x; can never improve the
expected payoff (regardless of the report of z;).
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2. Misreporting the direction of support does not increase payoft.

Observe that P, (—aj, -, 2;) is non-increasing. This follows from the
fact that probabilities add up to one, that is, for any a;, x;, 2;

1 =P, (ai,xi, 2i) + P_g, (a;, 24, )

%

where —a; in the subscript indicates the alternative that voter ¢ does
not prefer. Thus, if P,, (a;, -, ;) is non-decreasing by condition 1, then
P_,, (a;,-, ;) is non-increasing, so is P,, (—a;, -, 2;). As noted in foot-
note8, function C; (a;, -, ;) is a non-decreasing, so the function

Ti (=i, 2i,15) = 2Py, (—aq, -, Zi) — Ci (—ai, -, %)
is non-increasing.
In other words, if a voter masquerades herself as a member of a different
party, then her payoff will be at least as high as if she also misrepre-
sented her intensity as zero. This is the first inequality of the chain

below. The second and third lines follow from condition 3, and the
final line comes from step one above.

—a, 07 22) - Cl (_ai7 07 22)
—a;, 0, Ez‘) - C; (aia 0, 51')
a;, 07 21) - CZ (aia 07 22)

A, Ty, 21) - CZ (a’iv'riu 51) = 7}2 (aia Li, 2i7ri>

i (—ay, 2, ziymi) < @i Py,
*/Eipa‘

7

[EZ‘PG.

K3

'TiPai

o~~~ o~

VARVAN

This means that Ziﬁ'i (-CLZ‘, jﬁi, 21', Ti) S Ziﬁ'i (CLz‘, Xy, ZZ‘, Ti), or that misre-
porting a direction is never better than stating the direction and value
correctly (regardless of report z;).

3. Finally, note that if 7, (a;, z;,-) and P,, (a;, Z;,-) are constant then so
is C; (a;, z;, -); misreporting z; does not improve utility.

8.2 Proof of Lemma 1

Since the payoff of voter (or district) ¢ in an incentive compatibility mecha-
nism is z;7m; (a;, ;) the expected payoff is

N; = Eaz/ 2T (%Ji) Ji (':CZ|ZZ) dx;
0
Integrate by parts

o a 1 19 Lg
Ny = — By o zims (a5, 20) (1 — B (a]20)) |4 B / Omilans) 1 _ g (gi]2) da

0 al’l
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Use condition 2 of Proposition 1

1-F (%‘Z@) ' '
in (mz) in (xz) d.’ﬂz
in <x1>

Ni = Eai,ziziﬂ_i (ai7 0) + Eai,zi / Pai (ai7 mz) Zi
0

= ZfEaiﬂ'i (ai, 0) + Eai / Pai (ai, [L’l) (Ezzzz ) in (iL'Z) d.ﬁEl
0

Substitute Hz (xz) - Ezizl sz‘ (z4)

N, = 2/ Eqmi (a;,0) + Eq, 4, P, (i, x;) H; ()

8.3 Proof of Lemma 3

By adding and subtracting E,, , P, (@i, z;) v (Fx, (2;)), payoff in equation 3
can be written as

Ni = AgfB,mi(a;,0) + By, o, P, (@i, 2:) vi (Fx, (i)
+Eay i Pa; (ai,73) (0i (Fx, (73)) — 7 (Fx, (7))

The last component on the right can be integrated by parts and written as

Eq, Pu, (a5, ) (9 (Fx, (2:)) — Ti (Fx, (:))) |o

! OP,, (a;, ;)
B, [ R @, (P, () = T (P, (02)

Note that because of the convexification, we have ®; (0) =I"; (0) and ®; (1) =
I'; (1) at the end points; so the first term is equal to zero. This establishes
payoff in equation 7, and the definition of A;.

To show that A; is non-negative, notice that 0P, (a;, x;) /Ox; > 0, and,
because of convexification, we have ®; (¢) > I'; (¢) in the entire domain.

8.4 Proof of Theorem 1

By Lemma 1, total welfare is bounded
Z N; < Eup Zpai (a,x) v (Fk, (i)

The proof is conducted in two steps. Firstly, we will find p,, (a,z) that
maximizes this upper bound. Secondly, we will observe that this optimal
function also guarantees that the upper bound is reached with equality, and
thus it also maximizes total welfare itself.

25



Step 1. Take the sum under the expectation and write it as two separate
terms for individuals who support A and B, respectively,

>N < Ea,x<ZApA(%am$)%(FXi (@) + Y. pslagaj,2)% (Fx, <%‘)))

;=

j:a;=B

= Eu, (pA (a,2) > 7 (Fx, (2:) +psla,z) Y v (FX]- %‘)))

i:ai:A j:aj:B

Notice that pg (a,2) =1 — pa (a, ), and hence

ZNi < Eog (PA (a, ) ( Yo% (Fx, ()= Y (FX]- (%))

i:a;=A j:a;=B ) j:a;=B

The bound is maximized if the following rule is applied: Select A with prob-
ability 1 if and only if

> v (Fx (@) = > 7 (Fy, (27)

ira;=A jiaj=B

This establishes a candidate solution py, (a, z). Notice that this function gen-
erates an non-decreasing Py (a;, ;); this is true because +; is monotonically
increasing by construction.

Step 2. The last thing is to show that the proposed mechanism achieves
this (maximal) bound. That is, we want to show that if the candidate solution
is used then m; (a;,0) = 0 and A; = 0 for all individuals.

First, notice that the indifferent type is not expected to pay anything,
hence m; (a;,0) = 0.

Secondly, we show that if there exists an xz; such that ®; (F, (z;)) >
I'; (Fx, (x;)), then OP,, (a;,x;) /Ox; = 0 for all a;, and hence the second part
of A; is equal to zero too, proving the claim. Suppose that there is an x; for
which ®; (Fy, (z;)) > I'; (F, (x;)). But in this situation, the convexification
I'; is linear, and hence its derivative, ;, is constant in its neighborhood. If this
is the case, then a small change of such x; in condition ;... _4 7 (Fx, (z;)) >
> jia;=B Vi (FXj (xj)) will not change the allocation probability py (a,z) and
so OF,, (a;,x;) /0x; = 0.

8.5 Proof of Proposition 2

The mechanism does not make any use of report z; so misreporting it does
not improve the payoff regardless of the behavior of other voters.
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Consider now reporting true direction but misreporting intensity. Notice
that the level of payment ¢; (a, ) of voter i, conditional on winning, is in-
dependent of her report. This is because the RHS of equation 10 does not
depend on the report of voter ¢’s intensity. So, the only element of the out-
come that voter ¢ can affect by choosing different reports is her winning-losing
status.

Suppose that other voters vote such that

H;(0)< > Hi(z)— > H(x))
jiai=—k {j:ai=k,j#i}
The payment is set so that
Hi(ci(a, 7))+ > Hj(@)= > H;(x)
{j:ai=k.j#i} jai=—k

That is, if z; > ¢; (a,z) then reporting truthfully will guarantee that the al-
ternative preferred by voter i will be selected, because H; (+) is assumed to be
increasing. However, since in this case the individual payoff, z; (z; — ¢; (a, X)),
is positive too, voter ¢ wants his alternative to be selected at this price. Al-
ternatively, if x; < ¢; (a,Z) then reporting truthfully will guarantee that the
alternative preferred by voter ¢ will not be selected. However, since in this
case the individual payoff is negative, voter does not want to change this

situation.
If on the other hand

Hi(0)> > Hj(x)— > Hw)
jiai——k {j:ai=k.j#i}
then payment is zero ¢; (a,z) = 0. If voter i reports truthfully, then the
condition
Hi(z) > > Hj(z;)— > H;j ()
jiai——k {j:ai=k.j#i}
holds and his alternative is selected. Hence regardless of what other voters

do, voter 7 has no incentives to misreport her intensity.
Misreporting direction of preferences.

8.6 Proof of Proposition 5

Observe that if (1 — Fx (z)) /fx (z) is increasing then —1/ [ fx (s)ds >
(f%/f%), simply by taking the derivative.
Now, suppose that 3 is increasing. Thus

/:Oﬁ(af)fx(S)dS</:OB(S)fx(S)dS
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or

AW
[ B(s) fx (s)ds — [T fx (s)ds
This implies that
B (z)

TR A~ Ux/ )

But this implies that H' (z) = =8 (z)—(f%/f%) [, B8(s) fx (s)ds is positive.
The second part of the proposition can be obtained in a similar way.

9
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